

Agilent U1190A Series Handheld Clamp Meters

User's Guide

Agilent Technologies

Notices

© Agilent Technologies, Inc., 2011

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

U1191-90003

Edition

Second Edition, November 2011

Agilent Technologies, Inc. 5301, Stevens Creek Blvd. Santa Clara, CA 95051 USA

Warranty

The material contained in this document is provided "as is," and is subject to change, without notice, in future editions. Further, to the maximum extent permitted by the applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the likes of that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the likes of that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARN-ING notice until the indicated conditions are fully understood and met.

Safety Symbols

The following symbols on the instrument and in the documentation indicate precautions which must be taken to maintain safe operation of the instrument.

	DC (Direct current or voltage)	\wedge	Caution, risk of danger (refer to this manual for specific Warning or Caution information)
\sim	AC (Alternating current or voltage)	Ą	Application around and removal from HAZARDOUS LIVE conductors is permitted
\sim	Both direct and alternating current	400 A MAX	U1191A/U1192A: Maximum allowable current measurement is 400 A
느	Earth (ground) terminal	600 A MAX	U1193A/U1194A: Maximum allowable current measurement is 600 A
	Equipment protected throughout by double insulation or reinforced insulation	CAT III 600 V	Category III 600 V overvoltage protection
\bigwedge	Caution, risk of electric shock	CAT IV 300 V	Category IV 300 V overvoltage protection

Safety Considerations

Read the information below before using this instrument.

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards for design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

CAUTION

- Disconnect circuit power and discharge all high-voltage capacitors before testing resistance, continuity, diodes, or capacitance.
- Use the proper terminals, function, and range for your measurements.
- This device is for use at altitudes of up to 2,000 m.
- · Never measure voltage when current measurement is selected.
- Always use the specified battery type. The power for the meter is supplied with two standard AAA 1.5 V batteries. Observe the correct polarity markings before you insert the batteries to ensure proper insertion of the batteries in the meter.

WARNING

- Do not use the meter if it is damaged. Before you use the meter, inspect the case. Look for cracks or missing plastic. Pay particular attention to the insulation surrounding the connectors.
 - Inspect the test leads for damaged insulation or exposed metal. Check the test leads for continuity. Replace damaged test leads before you use the meter.
 - Do not operate the meter around explosive gas, vapor, or wet environments.
 - Do not apply more than the rated voltage and current (as marked on the meter) between the terminals or between the terminal and the earth ground.

WARNING

- Never use the meter in wet conditions or when there is water on the surface. If the meter is wet, ensure that the meter is dried only by trained personnel.
- Before use, verify the meter's operation by measuring a known voltage. Use caution when working above 60 V DC, 30 V AC RMS, or 42.4 V peak. Such voltages pose a shock hazard.
- When measuring current, turn off the circuit power before connecting the meter in the circuit. Remember to place the meter in series with the circuit.
- When measuring temperature, keep the thermocouple probe as close to the meter as possible, and avoid contact with surfaces above 60 V DC, 30 V AC RMS, or 42.4 V peak. Such voltages pose a shock hazard.
- When servicing the meter, use only the specified replacement parts.
- When using the probes, keep your fingers behind the finger guards on the probes.
- Connect the common test lead before you connect the live test lead. When you disconnect the leads, disconnect the live test lead first.
- Remove the test leads from the meter before you open the battery cover. Do not operate the meter with the battery cover or portions of the cover removed or loosened.
- To avoid false readings, which may lead to possible electric shock or personal injury, replace the battery as soon as the low battery indicator appears and flashes.
- Use the meter only as specified in this guide. Otherwise, the protection provided by the meter may be impaired.
- Individual protective equipment must be used if hazardous live parts in the installation are accessible where measurement is to be carried out.
- The tactile indicator or barrier, indicates the limit of safe access of the handheld part.

Environmental Conditions

This instrument is designed for indoor use and in an area with low condensation. The table below shows the general environmental requirements for this instrument.

Environmental conditions	Requirements
Operating temperature	–10 °C to 50 °C
Operating humidity	Up to 80% RH (relative humidity) for temperature up to 30 °C, decreasing linearly to 50% RH at 50 °C
Storage temperature	—40 °C to 60 °C, 40% to 80% RH (without batteries)
Altitude	Up to 2000 meters
Pollution degree	Pollution degree 2

NOTE

The U1190A Series Handheld Clamp Meter complies with the following safety and EMC requirements:

- IEC 61010-1:2001/EN 61010-1:2001
- IEC 61010-2-032:2002/EN 61010-2-032:2002
- CAN/CSA-C22.2 No. 61010-1-04
- CAN/CSA-C22.2 No. 61010-2-032-04
- ANSI/UL Std. No. 61010-1:2004
- IEC61326-1:2005/EN61326-1:2006
- Canada: ICES/NMB-001: Issue 4, June 2006
- Australia/New Zealand: AS/NZS CISPR 11:2004

Regulatory Markings

	The CE mark is a registered trademark of the European Community. This CE mark shows that the product complies with all the relevant European Legal Directives.	C N10149	The C-tick mark is a registered trademark of the Spectrum Management Agency of Australia. This signifies compliance with the Australia EMC Framework regulations under the terms of the Radio Communication Act of 1992.
ICES/NMB-001	ICES/NMB-001 indicates that this ISM device complies with the Canadian ICES-001. Cet appareil ISM est confomre a la norme NMB-001 du Canada.		This instrument complies with the WEEE Directive (2002/96/EC) marking requirement. This affixed product label indicates that you must not discard this electrical or electronic product in domestic household waste.
	The CSA mark is a registered trademark of the Canadian Standards Association.		This symbol indicates the time period during which no hazardous or toxic substance elements are expected to leak or deteriorate during normal use. Forty years is the expected useful life of the product.

Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

This instrument complies with the WEEE Directive (2002/96/EC) marking requirement. This affixed product label indicates that you must not discard this electrical or electronic product in domestic household waste.

Product Category:

With reference to the equipment types in the WEEE directive Annex 1, this instrument is classified as a "Monitoring and Control Instrument" product.

The affixed product label is as shown below.

Do not dispose in domestic household waste.

To return this unwanted instrument, contact your nearest Agilent Service Center, or visit

www.agilent.com/environment/product

for more information.

Declaration of Conformity (DoC)

The Declaration of Conformity (DoC) for this instrument is available on the Agilent website. You can search the DoC by its product model or description at the web address below.

http://regulations.corporate.agilent.com/DoC/search.htm

NOTE

If you are unable to search for the respective DoC, please contact your local Agilent representative.

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Table of Contents

1	Introduction
	About This Manual 2 Documentation map 2 Safety notes 2
	Preparing Your Clamp Meter 3 Checking the shipment 3 Installing the batteries 3 Turning on your clamp meter 6 Automatic Power-Off (APO) 7 Enabling the backlight 7 Enabling the flashlight 8 Alerts and warnings during measurement 9 Power-on options 10
	Your Clamp Meter in Brief 11 Dimensions 11 Overview 13 Rotary switch 15 Keypad 17 Display screen 18 Input terminals 21 Cleaning Your Clamp Meter 23
2	Making Measurements
	Measuring AC or DC Current 26
	Measuring AC Voltage 30
	Measuring DC Voltage 32
	Measuring Resistance 34
	Testing for Continuity 36

Testing Diodes39Measuring Capacitance43Measuring Temperature45Measuring AC or DC Current (up to μA)48Measuring Frequency50

3 Clamp Meter Features

Detecting AC Voltage Presence (Vsense) 54 Making Relative Measurements (Null) 57 Capturing Maximum and Minimum Values (Max.Min) 58 Freezing the Display (Hold) 60

4 Characteristics and Specifications

Product Characteristics 62 **Specification Assumptions** 64 Measurement Category 65 Measurement category definition 65 **Electrical Specifications** 66 **DC** specifications 66 AC specifications 68 **Capacitance specifications** 69 70 Temperature specifications Frequency specifications 71 Frequency sensitivity specifications 71 Display update rate (approximate) 72

List of Figures

Figure 1-1 Installing the batteries 4 Figure 1-2 Powering on the clamp meter 6 Figure 1-3 Front panel 13 Figure 1-4 Rear panel 14 Figure 2-1 AC current display 27 Figure 2-2 Measuring AC current 27 Figure 2-3 Wire separator and hook design 28 Figure 2-4 AC voltage display 30 Figure 2-5 Measuring AC voltage 31 Figure 2-6 DC voltage display 32 Figure 2-7 Measuring DC voltage 33 Figure 2-8 Resistance display 34 Figure 2-9 Measuring resistance 35 Figure 2-10 Open continuity display 36 Figure 2-11 Closed continuity display 36 Figure 2-12 Testing for continuity 38 Figure 2-13 Diode display 39 Figure 2-14 Open diode display 40 Figure 2-15 Testing forward-bias diode 41 Figure 2-16 Testing reverse-bias diode 42 Figure 2-17 Capacitance display 43 Figure 2-18 Measuring capacitance 44 Figure 2-19 Temperature display 45 Figure 2-20 Measuring the surface temperature 47 Figure 2-21 DC current display 48 Figure 2-22 Measuring AC/DC current (up to µA) 49 Figure 2-23 Frequency display 51 Figure 2-24 Measuring frequency 51 Figure 3-1 Vsense (high sensitivity) display 55 Figure 3-2 Vsense (low sensitivity) display 55 Figure 3-3 Detecting voltage presence 56 Figure 3-4 Null display 57 Figure 3-5 Max.Min display 58 Figure 3-6 Hold display 60

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

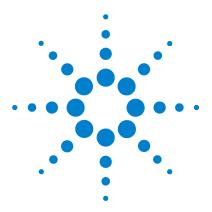

List of Tables

Table 1-1 Battery level indicator 5 Table 1-2 Power-on options 10
 Table 1-3
 Rotary switch functions
 16
 Table 1-4 Keypad functions 17
 Table 1-5
 General annunciators
 18

 Table 1-6
 Measurement units display
 20
 Table 1-7 Terminal connections for different measuring functions 21 Table 4-1 DC specifications 66
 Table 4-2
 AC voltage specifications
 68

 Table 4-3
 AC current specifications
 68
 Table 4-4
 Capacitance specifications
 69
 Table 4-5 Temperature specifications 70
 Table 4-6
 Frequency specifications
 71
 Table 4-7 Frequency sensitivity and trigger-level specifications for voltage measurements 71
 Table 4-8
 Frequency sensitivity and trigger level specifications for
 current measurements 72 Table 4-9 Display update rate (approximate) 72

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

U1190A Series Handheld Clamp Meter User's Guide

Introduction

About This Manual 2 Documentation map 2 Safety notes 2 Preparing Your Clamp Meter 3 Checking the shipment 3 Installing the batteries 3 Turning on your clamp meter 6 Automatic Power-Off (APO) 7 Enabling the backlight 7 Enabling the flashlight 8 Alerts and warnings during measurement 9 Power-on options 10 Your Clamp Meter in Brief 11 Dimensions 11 Overview 13 Rotary switch 15 Keypad 17 Display screen 18 Input terminals 21 Cleaning Your Clamp Meter 23

This chapter teaches you how to set up your clamp meter for the first time. An introduction to all the features of the clamp meter is also given.

About This Manual

The descriptions and instructions in this manual apply to the Agilent U1191A, U1192A, U1193A, and U1194A handheld clamp meters (hereafter referred to as the clamp meter).

The model U1194A appears in all illustrations.

Documentation map

The following manuals and software are available for your clamp meter. For the very latest version, please visit our website at: http://www.agilent.com/find/hhTechLib.

Check the manual revision on the first page of each manual.

- User's Guide. This manual.
- **Quick Start Guide.** Printed copy for outdoor use, included with shipment.
- Service Guide. Free download at the Agilent website.

Safety notes

Safety notes are used throughout this manual (see the "Safety Notices" section for format examples). Familiarize yourself with each of the notes and its meaning before operating your clamp meter.

More pertinent safety notes for using this product are located under the "Safety Considerations" section.

Do not proceed beyond a safety notice until the indicated conditions are fully understood and met.

1

Preparing Your Clamp Meter

Checking the shipment

When you receive your clamp meter, check the shipment according to the following procedure.

- **1** Inspect the shipping container for damage. Signs of damage may include a dented or torn shipping container or cushioning material that indicates signs of unusual stress or compacting. Save the packaging material in case the clamp meter needs to be returned.
- **2** Carefully remove the contents from the shipping container, and verify that the standard accessories and your ordered options are included in the shipment according to the standard shipped items list found in the printed copy of the *U1190A Series Quick Start Guide*.
- **3** For any question or problems, refer to the Agilent contact numbers on the back of this manual.

Installing the batteries

Your clamp meter is powered by two 1.5 V AAA alkaline batteries (included with the shipment). When you receive your clamp meter, the AAA alkaline batteries are not installed.

Use the following procedure to install the batteries.

CAUTION

Before you proceed with the batteries installation, remove all cable connections to the terminals and ensure that the rotary switch is at the OFF position. Use only the battery type specified in the "Product Characteristics" on page 62.

1 Introduction

Preparing Your Clamp Meter

- **1 Open the battery cover.** Loosen the screw with a suitable Phillips screwdriver and remove the battery cover as shown in Figure 1-1.
- **2 Insert the batteries.** Observe the proper battery polarity. The terminal ends of each battery are indicated inside the battery compartment.
- **3** Close the battery cover. Place the battery cover back in its original position and tighten the screw.

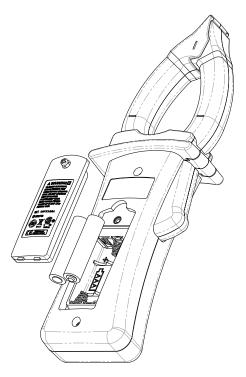


Figure 1-1 Installing the batteries

The battery level indicator in the lower left-hand corner of the display indicates the relative condition of the batteries. Table 1-1 describes the various battery levels the indicator represents.

Indication	Battery capacity
	Full capacity
	2/3 capacity
	1/3 capacity
(Flashing periodically)	Almost empty ^[1]

Table 1-1	Battery level indicator
-----------	-------------------------

[1] Batteries change advised. Always use the specified battery type listed in the "Product Characteristics" on page 62.

WARNING	To avoid false readings, which could lead to possible electric shock or personal injury, replace the batteries as soon as the low battery indicator appears. Do not discharge the batteries by shorting the batteries or reversing the polarity of the batteries.				
CAUTION	To avoid instruments being damage from battery leakage:				
OACTION	Always remove dead batteries immediately.				
	 Always remove the batteries and store them separately if the clamp meter is not going to be used for a long period. 				

Preparing Your Clamp Meter

Turning on your clamp meter

To power ON your clamp meter, turn the rotary switch from the **OFF** position to any other position.



Figure 1-2 Powering on the clamp meter

To power OFF your clamp meter, turn the rotary switch to the **OFF** position.

Automatic Power-Off (APO)

Your clamp meter automatically turns off if the rotary switch is not moved or a key is not pressed for 15 minutes (default). The clamp meter will beep thrice before it powers off. Pressing any key or turning the rotary switch to a new position will turn the clamp meter back on after it is powered off automatically.

The APO symbol is shown on the bottom left of the display when the automatic power-off function is enabled.

Follow the steps below to change the timer period or completely disable the automatic power-off.

- 1 Press and hold **(BOR)** while powering on the clamp meter to enter the Setup menu.
- 2 The automatic power-off (A#) timer period is the first Setup item shown.
- **3** Press (Hold) to make changes to the **A** # value.

Press \mathcal{M} or \triangle to change the timer period (from **A 01** to **A 99** minutes) or to completely disable the automatic power-off function (**AoFF**).

- 4 Press (mode) to save the changes, or press (mode) to discard the changes and proceed to the next Setup item.
- 5 Cycle the clamp meter's power to exit the Setup menu.

Enabling the backlight

If viewing the display becomes difficult in low-light conditions, press (a) (on the U1192A/U1193A/U1194A models) or (a) (on the U1191A model) to activate the LCD backlight.

Press **%**/***** again to deactivate the LCD backlight.

NOTE

To conserve battery life, a user-adjustable timer controls how long the backlight stays on. The default timer period is 15 seconds.

1 Introduction

Preparing Your Clamp Meter

Follow the steps below to change the timer period or completely disable the backlight timer.

- 1 Press and hold **we** while powering on the clamp meter to enter the Setup menu.
- 2 Press again. The backlight (**b**#) timer period is the second Setup item shown.
- **3** Press (How) to make changes to the **b** # value.

Press \checkmark or \bigtriangleup to change the timer period (from **b 01** to **b 99** seconds) or to completely disable the backlight timer function (**boFF**).

- 4 Press (mode to save the changes, or press (mode to discard the changes and proceed to the next Setup item.
- 5 Cycle the clamp meter's power to exit the Setup menu.

Enabling the flashlight

This feature is applicable for U1192A, U1193A, and U1194A models only.

If you are using the clamp meter in dark places, press and hold ***** for more than 1 second to activate the LED flashlight for greater visibility on your test points. This is not applicable to the U1191A model.

Press **1** for more than 1 second to deactivate the LED flashlight.

WARNING	VISION ADVISORY CLAIM It is advised that you do not look directly into the light source of the LED flashlight. As with any source of bright light, prolonged exposure can damage the eye.
NOTE	To conserve battery life, a user-adjustable timer can be set to control how long the flashlight stays on. This function is disabled by default.

1

Follow the steps below to change the timer period or completely disable the flashlight timer.

- 1 Press and hold **(BOR)** while powering on the clamp meter to enter the Setup menu.
- 2 Press **•••** twice. The flashlight (**t**#) timer period is the third Setup item shown.
- **3** Press (Hod) to make changes to the t # value.

Press \checkmark or \bigtriangleup to change the timer period (from **t 01** to **t 99** seconds) or to completely disable the flashlight timer function (**toFF**).

- 4 Press (mode to save the changes, or press (mode to discard the changes and proceed to the next Setup item.
- 5 Cycle the clamp meter's power to exit the Setup menu.

Alerts and warnings during measurement

Voltage alert

WARNING

For your own safety, please do not ignore the voltage alert. When the clamp meter cautions you with a voltage alert, you are advised to take note of the existence of high voltage and pay closer attention when performing measurements.

Your clamp meter provides a voltage alert for voltage measurements. The clamp meter starts beeping periodically once the measured voltage exceeds the alert value (regardless of polarity) set.

Hazardous voltage indication

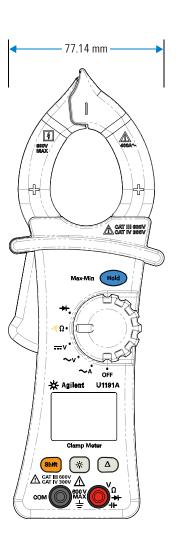
The clamp meter will also display the hazardous voltage (\checkmark) symbol as an early precaution when the measured voltage is equal to or greater than 30 V in all voltage measurement modes.

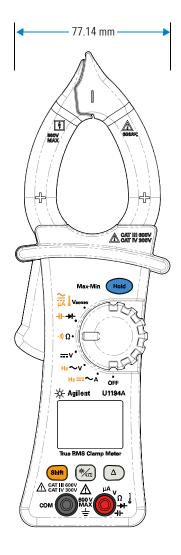
Preparing Your Clamp Meter

Power-on options

Some options can be selected only while you turn the clamp meter on. These power-on options are listed in the table below.

To select a power-on option, press and hold the specified key in Table 1-2 while turning the rotary switch from the **OFF** position to any other position.

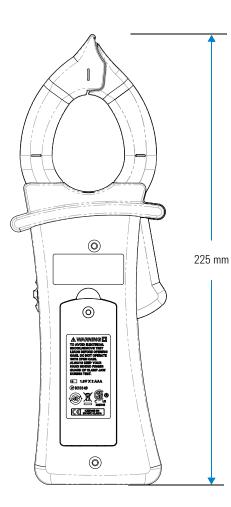

Кеу	Description
	Tests the LCD.
Hold	All annunciators are displayed in the LCD for 10 seconds. Cycle the clamp meter's power to exit this mode, or wait 10 seconds for the clamp meter to return to normal operation.
	Checks the firmware version.
Δ	The clamp meter's firmware version will be shown on the primary display. Cycle the clamp meter's power to exit this mode.
	Enters the clamp meter's Setup menu.
	See the following topics for more information on each respective Setup menu item.
Shift	 "Automatic Power-Off (APO)" on page 7 "Enabling the backlight" on page 7 "Enabling the flashlight" on page 8 "Changing the continuity visual alert" on page 37 Cycle the clamp meter's power to exit the Setup menu.
	Enters the unit selection menu for temperature
\frown	measurements (U1194A only).
(*/~) + ()	See "Changing the default temperature unit" on page 46 for more information. Cycle the clamp meter's power to exit this menu.

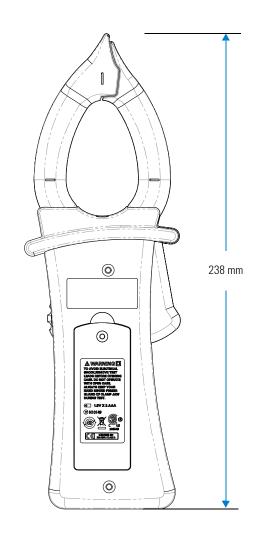

Table 1-2 Power-on options

Your Clamp Meter in Brief

Dimensions

Front view





1 Introduction

Your Clamp Meter in Brief

Rear view

Overview

Front panel

The front panel parts of your clamp meter are described in this section.

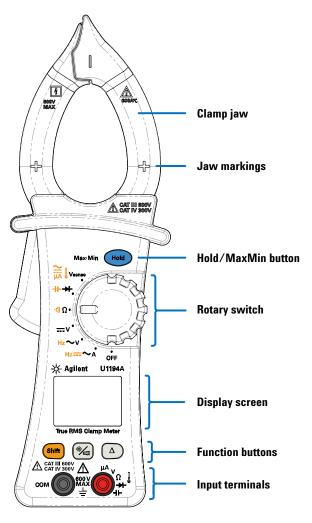


Figure 1-3 Front panel

1 Introduction

Your Clamp Meter in Brief

Rear panel

The rear panel parts of your clamp meter are described in this section.

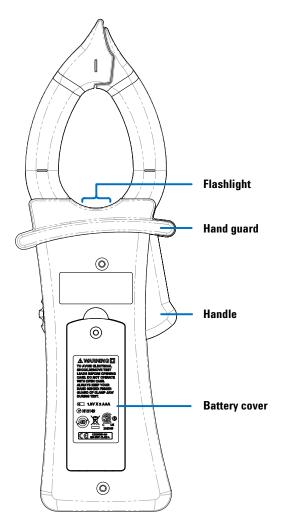


Figure 1-4 Rear panel

Rotary switch

The measurement functions for each rotary switch position are described in Table 1-3 on page 16. Turning the rotary switch changes the measurement function and resets all other measurement options.

NOTE	Some rotary switch positions have a <i>shifted</i> function printed in orange. Press (m) to switch between the shifted and primary function.
WARNING	Remove the test leads from the measuring source or target before changing the rotary switch position.
	Each position of the U1191A, U1192A, U1193A, and U1194A rotary switches (shown in Figure 1-3) is described in Table 1-3. Click the respective "Learn more" pages for more information on each function.
NOTE	 A list of some of the abbreviations used in Table 1-3 is given below. AC A: AC current measurement DC A: DC current measurement AC V: AC voltage measurement DC V: DC voltage measurement AC μA: AC current measurement (up to microamperes) DC μA: DC current measurement (up to microamperes)

1 Introduction

Your Clamp Meter in Brief

Table 1-3 Rotary switch functions

Legend	Functions shown in the primary display	U1194A	U1193A	U1192A	U1191A	Learn more on	
OFF	Off	✓	~	~	~	page 6	
	AC A	✓	~	~	~		
Hz≕∼A	DC A	✓	-	-	-	– page 26	
	Frequency (current path)	✓	~	~	-	page 50	
	AC V	✓	~	~	~	page 30	
Hz∼V	Frequency (voltage path)	✓	~	~	-	page 50	
 v	DC V	✓	~	~	~	page 32	
	Resistance	✓	~	~	~	page 34	
-1) Ω	Continuity	✓	~	~	~	page 36	
- > -	Diode	✓	~	~	~	page 39	
	Capacitance	✓	~	~	-	page 43	
Veoneo	Non-contact voltage detector	✓	~	~	-	page 54	
	Temperature	✓	-	-	-	page 45	
	DC μΑ	✓	-	-	-		
	ΑСμΑ	~	-	-	-	— page 48	

Keypad

The operation of each key is explained below. Pressing a key enables a function, displays a related symbol, and emits a beep. Turning the rotary switch to another position resets the current operation of the key.

Click the respective "Learn more" pages for more information on each function.

Table 1-4 Keypad functions

Laward	Function whe		
Legend	Less than 1 second	Learn more on:	
Hold	Freezes the present reading in the display.	Records the maximum, minimum, or average value.	page 60
Shift	Switches between the primary and shifted (icons printed in orange) functions.	-	page 15
*/	Turns the LCD backlight on or off.	Turns the LED flashlight on or off.	page 7 and page 8
*	U1191A only : Turns the LCD backlight on or off.	-	page 7
	Sets the null/relative mode.	-	page 57

Display screen

The display annunciators of your clamp meter are described in this section. See also "Measurement units" on page 20 for a list of available measurement signs and notations.

General display annunciators

The general display annunciators of your clamp meter are described in the table below.

Legend	Description	Learn more on:	
4	Hazardous voltage sign for measuring voltage ≥30 V or overload	page 9	
Hold	Hold enabled	page 60	
Auto	Auto-ranging enabled -		
Max	Maximum reading shown on primary display		
Min	Minimum reading shown on primary display	page 58	
Avg	Averaged reading shown on primary display		
Max Min Avg	Present reading shown on primary display		
Δ	Relative (Null) enabled	page 57	
₩	Diode test selected	page 39	
- 11)	Audible continuity test selected	page 36	
	DC (direct current) indication	page 26 and page 32	
ÃČ	AC (alternating current) indication	page 26 and page 30	

Table 1-5 General annunciators

U1190A Series User's Guide

Legend	Description	Learn more on:	
	Battery capacity indication	page 5	
A P O	APO (Auto Power-Off) enabled pa		
-8888	Primary measurement display	-	
MkΩHz WFAV	Measuring units	page 20	
ØL	Overload (the reading exceeds the display range)	-	

 Table 1-5
 General annunciators (continued)

1 Introduction

Your Clamp Meter in Brief

Measurement units

The available signs and notations for each measurement function in your clamp meter are described in Table 1-6. The units listed below are applicable to the primary display measurements of your clamp meter.

Sign/Notation	Description		
М	Mega	1E+06 (1000000)	
k	kilo	1E+03 (1000)	
n	nano	1E–09 (0.00000001)	
μ	micro	1E–06 (0.000001)	
m	milli	1E–03 (0.001)	
mV, V	Voltage units for voltage measurement		
μA, mA, A	Ampere units for current measurement		
nF, μF, mF	Farad units for capacitance measurement		
Ω, kΩ, MΩ	Ohm units for resistance measurement		
Hz, kHz, MHz	Hertz units for frequency measurement		
٥°C	Degree Celsius, unit for temperature measurement		
°F	Degree Fahrenheit, unit for temperature measurement		

 Table 1-6
 Measurement units display

Input terminals

The terminal connections for the different measurement functions of your clamp meter are described in the table below. Observe the rotary switch position of your clamp meter before connecting the test leads to the connector terminals.

WARNING Ensure that the probe accessories are connected to the correct input terminals for the selected measurement function before starting any measurement.

To avoid damaging this device, do not exceed the rated input limit.

Table 1-7	Terminal connections fo	or different measuring functions	
-----------	-------------------------	----------------------------------	--

CAUTION

Legend	Functions	U1194A	U1193A	U1192A	U1191A	Input terminals	Overload protection
	AC V	✓	~	~	~		
Hz∼V	Frequency (voltage path)	~	V	V	-		600 Vrms
<u></u> v	DC V	✓	~	~	~		
╬	Diode	v	~	~	~		600 Vrms for short circuit current <0.3 A
	Capacitance	✓	~	~	-		
- 1) Ω	Resistance	v	~	~	~		
	Continuity	v	~	~	~		
Veenee	Non-contact voltage detector	~	~	V	-		
µA ♣ vənəe	Temperature	~	-	-	-		

1 Introduction

Your Clamp Meter in Brief

Legend	Functions	U1194A	U1193A	U1192A	U1191A	Input terminals	Overload protection
	DC μΑ	~	-	-	-		
HA Veenee	ΑС μΑ	✓	-	-	-		CAT III 600 V
	AC A	✓	~	~	~		
	DC A	 ✓ 	-	-	-		
Hz ~ A	Frequency (current path)	~	~	~	-	600 Arms	600 Arms

Table 1-7 Terminal connections for different measuring functions

Cleaning Your Clamp Meter

WARNING

To avoid electrical shock or damage to the clamp meter, ensure that the insides of the casing stay dry at all times.

Dirt or moisture in the terminals can distort readings. Follow the steps below to clean your clamp meter.

- **1** Turn the clamp meter off, and remove the test leads.
- **2** Turn the clamp meter over, and shake out any dirt that may have accumulated in the terminals.

Wipe the case with a damp cloth and mild detergent - do not use abrasives or solvents. Wipe the contacts in each terminal with a clean swab dipped in alcohol.

1 Introduction

Cleaning Your Clamp Meter

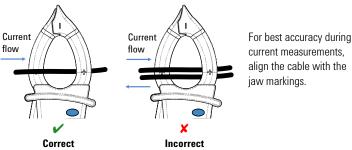
THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

U1190A Series Handheld Clamp Meter User's Guide

Making Measurements

Measuring AC or DC Current 26 Measuring AC Voltage 30 Measuring DC Voltage 32 Measuring Resistance 34 Testing for Continuity 36 Testing Diodes 39 Measuring Capacitance 43 Measuring Temperature 45 Measuring AC or DC Current (up to µA) 48 Measuring Frequency 50

This chapter describes how to take measurements with your clamp meter.

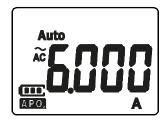

Measuring AC or DC Current

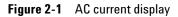
WARNING

Ensure that the test leads are disconnected from the input terminals when measuring current with the clamp jaws.

CAUTION

Ensure that the clamp meter measures only one conductor at a time. Measuring multiple conductors may cause inaccuracy in measurement readings due to the vector sum of currents flowing in the conductors.


Correct Incorrect Use the wire separator to separate individual wires or cables from a


mesh of wires or cables. See "Using the wire separator and hook" on page 28 for more information.

Set up your clamp meter to measure AC current or DC current (U1194A model only) as shown in Figure 2-2. Clamp the wire/cable, and read the display.

NOTE

Press em to measure the frequency of the AC current source (U1192A, U1193A, and U1194A models only). See "Measuring Frequency" on page 50 to learn more.

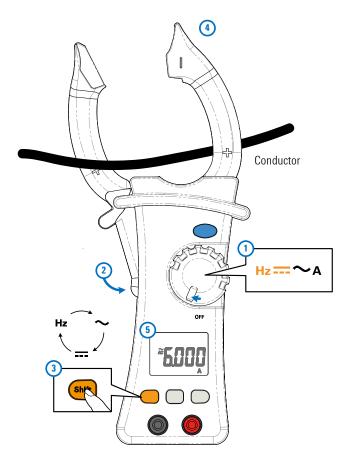


Figure 2-2 Measuring AC current

2 Making Measurements

Measuring AC or DC Current

Using the wire separator and hook

Your clamp meter's design has a wire separator and hook feature (see Figure 2-3) that can be used to separate individual wires or cables for measurements from a mesh of wires or cables.

Use the wire separator and hook to avoid touching live wires or cables without the necessary insulation protection or powering off the voltage or current source.

Follow the instructions below to use the wire separator and hook feature.

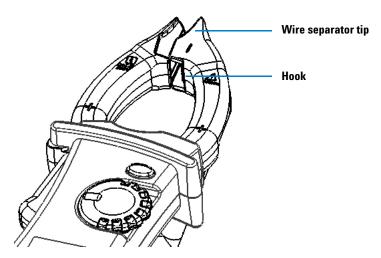
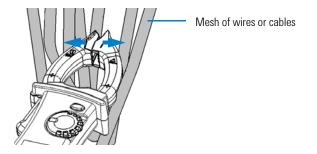
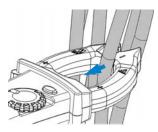




Figure 2-3 Wire separator and hook design

1 Open the clamp jaw slightly to reveal the wire separator tip. Use the wire separator tip to locate the desired wire or cable.

2 Separate the wire or cable by hooking it in the clamp jaw securely and pulling it back.

3 Close the clamp jaw to secure the wire or cable, and read the measurement.

Measuring AC Voltage

NOTE	Reversing the leads will produce a negative reading, but it will not damage the clamp meter.
	Set up your clamp meter to measure AC voltage as shown in Figure 2-5. Probe the test points, and read the display.
NOTE	For U1193A and U1194A models:
	AC voltage measurements measured with this clamp meter are returned as true RMS (root mean square) readings. These readings are accurate for sinusoidal waves. For non-sinusoidal waveforms, please refer to the "Specification Assumptions" on page 64.

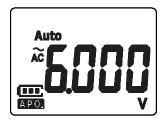


Figure 2-4 AC voltage display

NOTE

Press end to measure the frequency of the AC voltage source (U1192A, U1193A, and U1194A models only). See "Measuring Frequency" on page 50 to learn more.

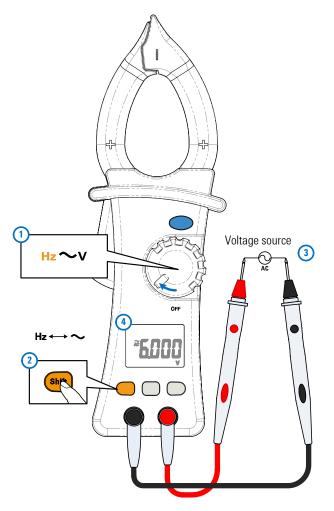


Figure 2-5 Measuring AC voltage

Measuring DC Voltage

Set up your clamp meter to measure DC voltage as shown in Figure 2-7. Probe the test points, and read the display.

NOTE

This clamp meter displays DC voltage values as well as their polarity. Negative DC voltages will return a negative sign on the left of the display.

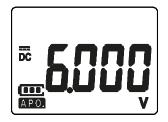


Figure 2-6 DC voltage display

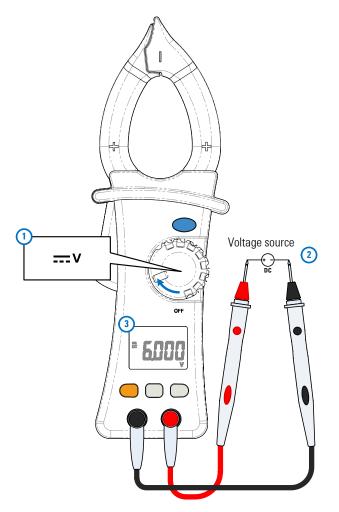


Figure 2-7 Measuring DC voltage

Measuring Resistance

Set up your clamp meter to measure resistance as shown in Figure 2-9. Probe the test points, and read the display.

CAUTION

To avoid possible damage to your clamp meter or to the equipment under test, disconnect the circuit power and discharge all high-voltage capacitors before measuring resistance.

NOTE

Resistance (opposition to the current flow) is measured by sending a small current out through the test leads to the circuit under test. Because this current flows through all possible paths between the leads, the resistance reading represents the total resistance of all paths between the leads. Resistance is measured in ohms (Ω).

Figure 2-8 Resistance display

NOTE

Keep the following in mind when measuring resistance.

- The test leads can add 0.1 Ω to 0.2 Ω of error to resistance measurements. To test the leads, touch the probe tips together and read the resistance of the leads.
- Because the clamp meter's test current flows through all possible paths between the probe tips, the measured value of a resistor in a circuit is often different from the resistor's rated value.
- The resistance function can produce enough voltage to forward-bias silicon diodes or transistor junctions, causing them to conduct.

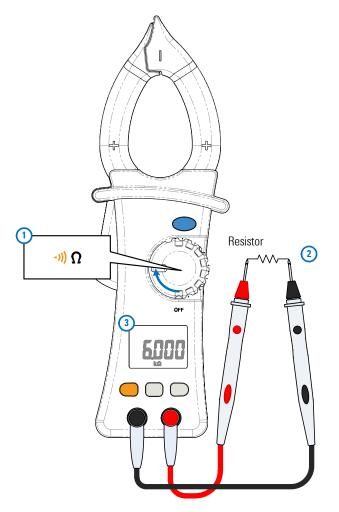


Figure 2-9 Measuring resistance

Testing for Continuity

Set up your clamp meter to test for continuity as shown in Figure 2-12. Probe the test points, and read the display.

CAUTION	To avoid possible damage to your clamp meter or to the equipment under test, disconnect the circuit power and discharge all high-voltage capacitors before testing for continuity.
NOTE	Continuity is the presence of a complete path for current flow. The continuity test features a beeper that sounds and a backlight that flashes as long as a circuit is complete. The audible and visual alert allows you to perform quick continuity tests without having to watch the display.

Press to switch between resistance measurement, or continuity test. See Figure 2-12 to learn more.

Figure 2-10 Open continuity display

Figure 2-11 Closed continuity display

NOTE

- You can set the beeper to sound and the backlight to flash as a continuity indication whether the circuit-under-test is less than (short) the threshold resistance.
- The continuity function detects intermittent shorts lasting as short as 1 ms. A brief short causes the multimeter to emit a short beep and flash.
- You can enable or disable the visual alert via the Setup menu. See "Changing the continuity visual alert" on page 37 for more information.

Changing the continuity visual alert

You can set the backlight to flash along with the beeper sound as a continuity indication whether the circuit-under-test is less than the threshold resistance.

Follow the steps below to enable or disable the continuity visual alert.

- 1 Press and hold **w** while powering on the clamp meter to enter the Setup menu.
- **2** Press **again**. The continuity visual alert (•••) is the fourth Setup item shown.
- 3 Press to make changes to the continuity visual alert.
 Press alert (the backlight turns on or off).
- 4 Press (mode to save the changes, or press (mode to discard the changes and proceed to the next Setup item.
- 5 Cycle the clamp meter's power to exit the Setup menu.

2 **Making Measurements**

Testing for Continuity

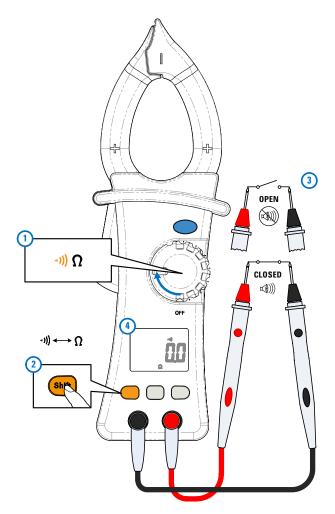


Figure 2-12 Testing for continuity

Testing Diodes

Set up your clamp meter to test diodes as shown in Figure 2-15. Probe the test points, and read the display.

CAUTION	To avoid possible damage to your clamp meter or to the equipment under test, disconnect the circuit power and discharge all high-voltage capacitors before testing diodes.
NOTE	 Use the diode test to check diodes, transistors, silicon controlled rectifiers (SCRs), and other semiconductor devices. A good diode allows current to flow in one direction only. This test sends a current through a semiconductor junction, and then measures the junction's voltage drop.

• Connect the red test lead to the positive terminal (anode) of the diode and the black test lead to the negative terminal (cathode). The cathode of a diode is indicated with a band.

Figure 2-13 Diode display

NOTE

Your clamp meter can display the forward-bias of a diode up to approximately 1.8 V. The forward-bias of a typical diode is within the range of 0.3 V to 0.8 V; however, the reading can vary depending on the resistance of other pathways between the probe tips.

NOTE

If the beeper is enabled during diode test, the clamp meter will beep briefly for a normal junction and sound continuously for a shorted junction.

Reverse the probes (as shown in Figure 2-16) and measure the voltage across the diode again. Assess the diode according to the following guidelines:

- A diode is considered good if the clamp meter displays **1** in reverse-bias mode.
- A diode is considered shorted if the clamp meter displays approximately 0 V in both forward and reverse-bias modes, and the clamp meter beeps continuously.
- A diode is considered open if the clamp meter displays **1** in both forward- and reverse-bias modes.

Figure 2-14 Open diode display

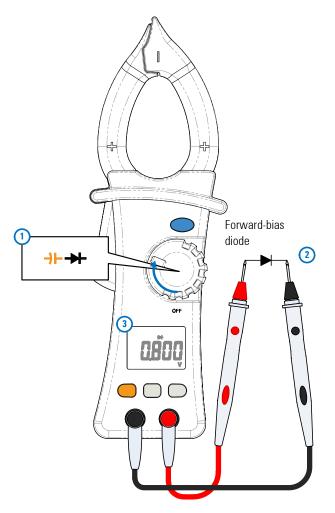


Figure 2-15 Testing forward-bias diode

2 **Making Measurements** Testing Diodes

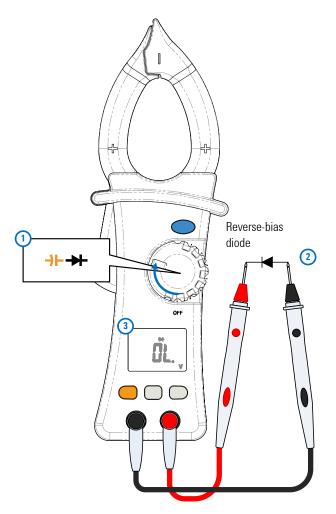


Figure 2-16 Testing reverse-bias diode

Measuring Capacitance

This measurement function is applicable for U1192A, U1193A, and U1194A models only.

Set up your clamp meter to measure capacitance as shown in Figure 2-18. Probe the test points, and read the display.

CAUTION	To avoid possible damage to the clamp meter or to the equipment under test, disconnect circuit power and discharge all high-voltage		
	capacitors before measuring capacitance. Use the DC voltage functi to confirm that the capacitor is fully discharged.		
NOTE	The clamp meter measures capacitance by charging the capacitor with a known current for a known period of time, measuring the resulting voltage, and then calculating the capacitance.		

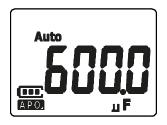


Figure 2-17 Capacitance display

NOTE

For measuring capacitance values greater than 1000 μ F, discharge the capacitor first, then select a suitable range for measurement. This will speed up the measurement time and also ensure that the correct capacitance value is obtained.

2 **Making Measurements** Measuring Capacitance

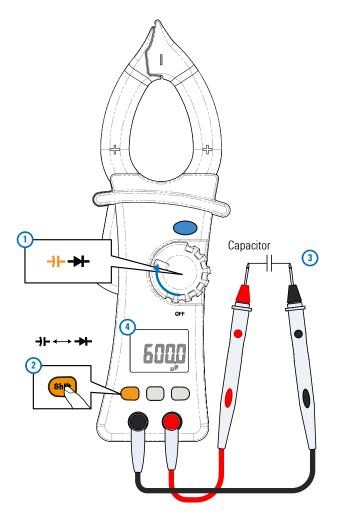


Figure 2-18 Measuring capacitance

Measuring Temperature

This measurement function is applicable for the U1194A model only.

Set up your clamp meter to measure temperature as shown in Figure 2-20. Probe the test points, and read the display.

WARNING	Do not connect the thermocouple to electrically live circuits. Doing so will potentially cause fire or electric shock.
CAUTION	Do not bend the thermocouple leads at sharp angles. Repeated bending over a period of time can break the leads.
NOTE	 The clamp meter uses the type-K thermocouple probe (included in the standard shipped items of a U1194A model) for measuring temperature. The approximate ambient temperature (cold-junction compensation) is shown on the display when you have an open thermocouple. The open thermocouple message may be due to a broken (open) probe or because no probe is installed into the input jacks of the clamp meter. Shorting the terminal to the terminal will display the temperature at the clamp meter's terminals.

Figure 2-19 Temperature display

Measuring Temperature

Changing the default temperature unit

Follow the steps below to change the temperature unit between Celsius (°C) or Fahrenheit (°F).

- 1 Press and hold ***** and **•** while powering on the clamp meter to enter the temperature unit selection menu.
- **2** Press (m) to make changes to the temperature unit.

Press \mathcal{M}_{6} or \triangle to change the temperature unit (°C or °F).

3 Press \bowtie to save the changes.

Cycle the clamp meter's power to exit the temperature unit selection menu.

CAUTION Always set the temperature unit display per the official requirements and in compliance with the national laws of your region.

NOTE

The bead-type thermocouple probe is suitable for measuring temperatures from -40 °C to 204 °C (399 °F) in Teflon-compatible environments. Do not immerse this thermocouple probe in any liquid. For best results, use a thermocouple probe designed for each specific application — an immersion probe for liquid or gel, and an air probe for air measurement.

Observe the following measurement techniques:

- Clean the surface to be measured, and ensure that the probe is securely touching the surface. Remember to disable the applied power.
- When measuring above ambient temperatures, move the thermocouple along the surface until you get the highest temperature reading.
- When measuring below ambient temperatures, move the thermocouple along the surface until you get the lowest temperature reading.
- Place the clamp meter in the operating environment for at least 1 hour as the clamp meter is using a non-compensation transfer adapter with miniature thermal probe.

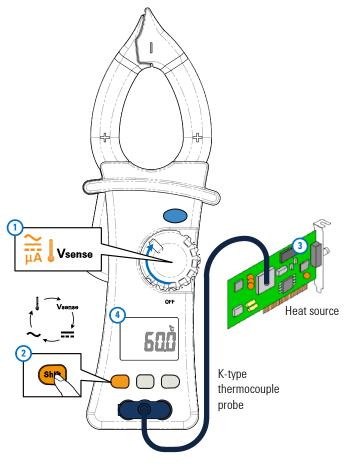


Figure 2-20 Measuring the surface temperature

2 Making Measurements

Measuring AC or DC Current (up to μ A)

Measuring AC or DC Current (up to μ A)

WARNING	Never attempt an in-circuit current measurement where the open-circuit potential to earth is greater than 1000 V. Doing so will cause damage to the clamp meter and possible electric shock or personal injury.
CAUTION	 To avoid possible damage to the clamp meter or to the equipment under test, use the proper terminals, function, and range for your measurement. Use the clamp jaw for currents above 600 μA.
	 To measure current, you must open the circuit under test, then place the clamp meter in series with the circuit. Never place the probes across (in parallel with) any circuit or component when the leads are plugged into the current terminals.
	 Placing the probes across (in parallel with) a powered circuit when a lead is plugged into a current terminal can damage the circuit you are testing. This happens because the resistance through the clamp meter's current terminals is very low, resulting in a short circuit.

This measurement function is applicable for the U1194A model only.

Set up your clamp meter to measure AC or DC current (up to μA) as shown in Figure 2-22. Probe the test points, and read the display.

Auto	•
DC	rnn
	hiiii
APO.	ш А 🛛

Figure 2-21 DC current display

Making Measurements 2

Measuring AC or DC Current (up to μ A)

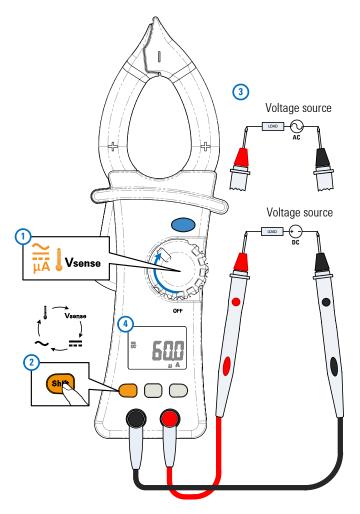


Figure 2-22 Measuring AC/DC current (up to μ A)

Measuring Frequency

WARNING	Never measure the frequency where the voltage or current level exceeds the specified range.
	This measurement function is applicable for U1192A, U1193A, and U1194A models only.
	Your clamp meter allows simultaneous monitoring of real- time voltage or current with frequency measurements.
NOTE	 Measuring the frequency of a signal helps detect the presence of harmonic currents in neutral conductors and determines whether these neutral currents are the result of unbalanced phases or non-linear loads.
	 Frequency is the number of cycles a signal completes each second. Frequency is defined as 1/Period. Period is defined as the time between the middle threshold crossings of two consecutive, like-polarity edges, as shown in the figure below.
	Rise Time Fall Time

+ Width

within a specified period of time.

•

– Width –

Period

The clamp meter measures the frequency of a voltage or current signal

by counting the number of times the signal crosses a threshold level

— · 50%

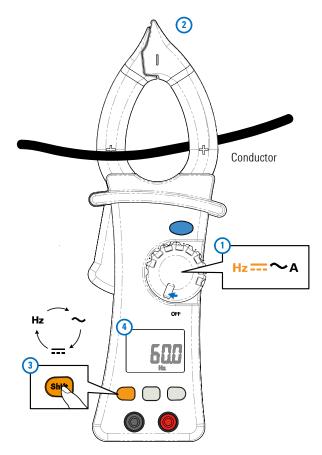
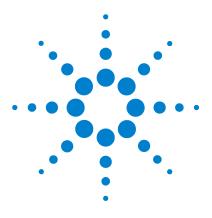



Figure 2-24 Measuring frequency

2 Making Measurements

Measuring Frequency

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

U1190A Series Handheld Clamp Meter User's Guide

Clamp Meter Features

3

Detecting AC Voltage Presence (Vsense) 54 Making Relative Measurements (Null) 57 Capturing Maximum and Minimum Values (Max.Min) 58 Freezing the Display (Hold) 60

The chapter describes the additional features available in your clamp meter.

Detecting AC Voltage Presence (Vsense)

WARNING	 You are advised to test on a known live circuit within the rated AC voltage range of this product before and after each use to ensure that the Vsense detector works. 			
	 Voltage could still be present even if there is no Vsense alert indication. Do not rely on the Vsense detector with shielded wire. Never touch live voltage or conductor without the necessary insulation protection or power off the voltage source. 			
	 The Vsense detector may be affected by differences in socket design, insulation thickness, and insulation type. 			
CAUTION	You are advised to measure voltage by using test leads through the AC V or DC V function after using the Vsense function, even if there is no alert indication.			
	This measurement function is applicable for U1192A, U1193A, and U1194A models only.			
	The Vsense detector is a non-contact voltage detector that detects the presence of AC voltages nearby.			
	Set up your clamp meter to enable the Vsense function as shown in Figure 3-3.			
NOTE	If the presence of AC voltage is sensed, the clamp meter's beeper will sound. The audible alert allows you to easily sense nearby AC voltage presence.			
	No resolution and accuracy of voltage measurement will be displayed in this mode.			

NOTE

- Place the top of the clamp meter close to a conductor when sensing for AC voltages (as low as 24 V in the Hi.SE setting).
- The low sensitivity setting can be used on flush mounted wall sockets or outlets and various power strips or cords.
- The high sensitivity setting allows for AC voltage sensing on other styles of recessed power connectors or sockets where the actual AC voltage is recessed within the connector itself.

Press 😡 to toggle the Vsense detector's sensitivity between **Hi.SE** (high sensitivity) or **Lo.SE** (low sensitivity).

Figure 3-1 Vsense (high sensitivity) display

Figure 3-2 Vsense (low sensitivity) display

3 Clamp Meter Features

Detecting AC Voltage Presence (Vsense)

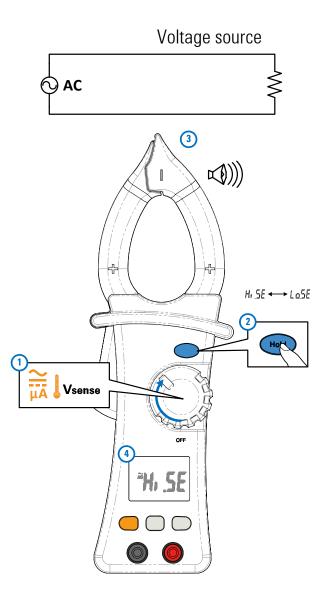


Figure 3-3 Detecting voltage presence

Making Relative Measurements (Null)

When making Null measurements, also called relative, each reading is the difference between a stored (measured) null value and the input signal.

One possible application is to increase the accuracy of a resistance measurement by nulling the test lead resistance. Nulling the leads is also particularly important prior to making capacitance measurements.

1 To activate the relative mode, press the (a) key. The measurement value at the time, when Null is enabled, is stored as the reference value.

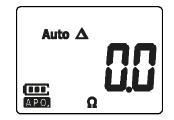


Figure 3-4 Null display

2 To disable the Null function, press (a) again.

For any measurement function, you can directly measure and store the null value by pressing \triangle with the test leads open (nulls the test lead capacitance), shorted (nulls the test lead resistance), or across a desired null value circuit.

NOTE

- In resistance measurement, the clamp meter will read a non-zero value even when the two test leads are in direct contact because of the resistance of these leads. Use the Null function to zero-adjust the display.
- For DC voltage measurements, the thermal effect will influence the accuracy of the measurements. Short the test leads and press when the displayed value is stable to zero-adjust the display.

Capturing Maximum and Minimum Values (Max.Min)

Capturing Maximum and Minimum Values (Max.Min)

The Max.Min operation stores the maximum, minimum, and average input values during a series of measurements.

When the input goes below the recorded minimum value or above the recorded maximum value, the clamp meter beeps and records the new value. The clamp meter also calculates an average of all readings taken since the Max.Min mode was activated.

From the clamp meter's display, you can view the following statistical data for any set of readings:

- Max: highest reading since the Max.Min function was enabled
- Min: lowest reading since the Max.Min function was enabled
- Avg: average or mean of all readings since the Max.Min function was enabled
- MaxMinAvg: present reading (actual input signal value)
- **1** Press and hold **w** for more than 1 second to enable the Max.Min operation.
- 2 Press again to cycle through the Max, Min, Avg, or present (MaxMinAvg) input values.
- **3** Press (How) for more than 1 second to disable the Max.Min function.

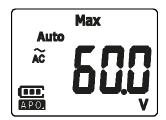


Figure 3-5 Max.Min display

NOTE If an overload is recorded, the averaging function will be stopped. **I** is shown in place of the average value.

This mode is useful for capturing intermittent readings, recording minimum and maximum readings unattended, or recording readings while equipment operation keeps you from observing the clamp meter display.

The true average value displayed is the arithmetic mean of all readings taken since the start of recording. The average reading is useful for smoothing out unstable inputs, calculating power consumption, or estimating the percentage of time a circuit is active.

Freezing the Display (Hold)

To freeze the display for any function, press the www key.

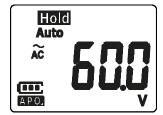


Figure 3-6 Hold display

Press 😡 again to disable this function.

U1190A Series Handheld Clamp Meter User's Guide

4

Characteristics and Specifications

Product Characteristics 62 Specification Assumptions 64 Measurement Category 65 Measurement category definition 65 Electrical Specifications 66 DC specifications 66 AC specifications 68 Capacitance specifications 69 Temperature specifications 70 Frequency specifications 71 Frequency sensitivity specifications 71 Display update rate (approximate) 72

This chapter lists the characteristics, assumptions, and specifications of the U1191A, U1192A, U1193A, and U1194A handheld clamp meters.

4 Characteristics and Specifications Product Characteristics

Product Characteristics

NOTE

Product characteristics specified in the table below are applicable for U1191A, U1192A, U1193A, and U1194A models unless stated otherwise.

POWER SUPPLY

Battery type:

2 × 1.5 V AAA Alkaline battery (IEC LR03)

Battery life:

- 200 hours typical (based on new Alkaline batteries, for continuous DC voltage measurement, with backlight disabled)
- 40 hours typical (based on new Alkaline batteries, with backlight enabled)
- Low battery indicator will flash when the battery voltage drops below 2.5 V (approximately)

POWER CONSUMPTION

- 9 mVA maximum (based on new Alkaline batteries, for continuous DC voltage measurement, with backlight disabled)
- 42 mVA maximum (based on new Alkaline batteries, for continuous DC voltage measurement, with backlight enabled)

DISPLAY

Liquid crystal display (LCD) with backlight (maximum reading of 6000 counts)

OPERATING ENVIRONMENT

- Operating temperature from -10 °C to 50 °C, 0% to 80% RH
- Up to 80% RH for temperatures up to 30 °C, decreasing linearly to 50% RH at 50 °C
- · Altitude up to 2000 meters
- Pollution degree 2

STORAGE COMPLIANCE

-40 °C to 60 °C, 40% to 80% RH (without batteries)

SAFETY COMPLIANCE

- IEC 61010-1:2001/EN 61010-1:2001
- IEC 61010-2-032:2002/EN 61010-2-032:2002
- CAN/CSA-C22.2 No. 61010-1-04
- CAN/CSA-C22.2 No. 61010-2-032-04
- ANSI/UL Std. No. 61010-1:2004

MEASUREMENT CATEGORY

CAT III 600 V and CAT IV 300 V (for digital multimeter and current clamp portions)

ELECTROMAGNETIC COMPATIBILITY (EMC)

- IEC61326-1:2005/EN61326-1:2006
- Canada: ICES/NMB-001: Issue 4, June 2006
- Australia/New Zealand: AS/NZS CISPR 11:2004

TEMPERATURE COEFFICIENT

0.1 × (specified accuracy) / °C (from 0 °C to 18 °C, or 28 °C to 50 °C)

COMMON MODE REJECTION RATIO (CMRR)

>60 dB at DC, 60 Hz in the AC V function

>120 dB at DC, 50/60 Hz in the DC V function

NORMAL MODE REJECTION RATION (NMRR)

>60 dB at 50/60 Hz

DIMENSIONS ($W \times H \times D$)

- U1191A/U1192A: 77.14 × 225 × 38.56 mm
- U1193A/U1194A: 77.14 × 238 × 38.56 mm

WEIGHT

- U1191A/U1192A: 320 grams (with batteries)
- U1193A: 334 grams (with batteries)
- U1194A: 348 grams (with batteries)

MAXIMUM CONDUCTOR SIZE

- U1191A/U1192A: Up to 27 mm diameter for 500 MCM cable
- U1193A/U1194A: Up to 35 mm diameter for 750 MCM cable

MAXIMUM JAW OPENING

- U1191A/U1192A: Up to 31 mm
- U1193A/U1194A: Up to 37 mm

4 Characteristics and Specifications

Specification Assumptions

WARRANTY

Please refer to http://www.agilent.com/go/warranty_terms

- · Three years for the product
- Three months for the product's standard accessories, unless otherwise specified
- · Please take note that for the product, the warranty does not cover:
 - Damage from contamination
 - · Normal wear and tear of mechanical components
 - Manuals and standard disposable batteries

CALIBRATION CYCLE

One year

Specification Assumptions

- Accuracy is given as \pm (% of reading + counts of least significant digit) at 23 °C \pm 5 °C, with relative humidity less than 80% RH.
- AC V and AC A specifications for U1193A and U1194A models are AC coupled, true RMS, and are valid from 5% of range to 100% of range.
- The crest factor may be up to 3.0 at full-scale (4000 counts)
- For non-sinusoidal waveforms, add (2% reading + 2% full scale) typically.
- In the EMC RF field of 3 V/m, the total accuracy is specified as the specified accuracy ± 30 digits for all functions.

Measurement Category

The Agilent U1190A Series Handheld Clamp Meters have a safety rating of CAT III, 600 V and CAT IV, 300 V.

Measurement category definition

Measurement CAT I are for measurements performed on circuits not directly connected to the AC mains. Examples are measurements on circuits not derived from the AC mains and specially protected (internal) mains-derived circuits.

Measurement CAT II are measurements performed on circuits directly connected to a low-voltage installation. Examples are measurements on household appliances, portable tools, and similar equipment.

Measurement CAT III are measurements performed in building installations. Examples are measurements on distribution boards, circuit-breakers, wiring, including cables, bus-bars, junction boxes, switches, socket outlets in the fixed installation, and equipment for industrial use, and some other equipment including stationary motors with permanent connection to the fixed installation.

Measurement CAT IV are measurements performed at the source of low-voltage installations. Examples are electricity meters and measurements on primary over current protection devices and ripple control units.

4 Characteristics and Specifications Electrical Specifications

Electrical Specifications

NOTE

Specification assumptions are given on page 64.

DC specifications

Table 4-1 DC specifications

Function Range		Resolution		Ассі	iracy		Test current	Open voltage	
		_	U1191A	U1192A	U1193A	U1194A	(where ap	olicable)	
N/ 1/	60.00 V	0.01 V	-	0.5% + 3	0.5% + 3	0.5% + 3	-	-	
Voltage 600.0 V	0.1 V	0.5% + 3	0.5% + 3	0.5% + 3	0.5% + 3	-	-		

Notes for DC voltage specifications:

1 Overload protection: 600 Vdc.

2 Input impedance: 10 M Ω (nominal) in parallel with <100 pF

	600.0 Ω	0.1 Ω	0.8% + 5	0.8% + 5	0.8% + 5	0.8% + 5	≈95 µA	1.4 V
Resistance	$6.000~\mathrm{k}\Omega$	0.001 kΩ	0.8% + 3	0.8% + 3	0.8% + 3	0.8% + 3	≈95 µA	1.4 V
-	60.00 k Ω	0.01 kΩ	-	0.8% + 3	0.8% + 3	0.8% + 3	≈95 µA	0.7 V

Notes for resistance specifications:

1 Overload protection: 600 Vrms for short circuits with <0.3 A current

2 Maximum open voltage is <1.4 V

3 The accuracy is specified after the Null function is used to subtract the test lead resistance and thermal effect (by shorting the test leads).

Table 4-1 DC specifications (continued)

Function	Range	Resolution		Ассі	iracy		Test current	Open voltage
			U1191A	U1192A	U1193A	U1194A	(where ap	plicable)
Continuity	600.0 Ω	0.1 Ω	0.8% + 5	0.8% + 5	0.8% + 5	0.8% + 5	≈95 µA	≈1.4 V

Notes for continuity specifications:

- 1 Overload protection: 600 Vrms for short circuits with <0.3 A current
- 2 Built-in buzzer beeps continuously when the resistance measured is less than 30 Ω . Resistance measurements above 200 Ω are considered open. For resistance measured between 30 Ω and 200 Ω (30 $\Omega \leq$ reading \leq 200 Ω), the built-in buzzer may beep depending on the device-under-test.
- **3** Continuity indicator: 2.7 kHz tone buzzer

	Diode	1.500 V	0.001 V	1.0% + 3	1.0% + 3	1.0% + 3	1.0% + 3	≈0.3 mA	1.8 V
--	-------	---------	---------	----------	----------	----------	----------	---------	-------

Notes for diode specifications:

- 1 Overload protection: 600 Vrms for short circuits with <0.3 A current
- 2 Built-in buzzer beeps continuously when the voltage measured is less than 100 mV and beeps once for forward-biased diode or semiconductor junctions measured between 0.3 V and 0.8 V ($0.3 \text{ V} \le \text{reading} \le 0.8 \text{ V}$).

	60.00 µA	0.01 µA	-	-	-	1.0% + 5	-	-
Current	600.0 µA	0.1 µA	-	-	-	1.0% + 5	-	-
Guitein	60.00 A	0.01 A	-	-	-	2.0% + 5	-	-
	600.0 A	0.1 A	-	-	-	2.0% + 5	-	-

Notes for DC current specifications:

- 1 60 A to 600 A ranges are for current clamp measurements.
- 2 60 µA to 600 µA ranges are for digital multimeter measurements.
- 3 Overload protection for 60 A to 600 A range: 600 Arms
- 4 Input impedance for 60 μ A to 600 μ A range: \approx 4.2 k Ω
- 5 Position error: 1% from reading
- 6 The accuracy is specified after the Null function is used to subtract the test lead resistance and thermal effect (by shorting the test leads).

AC specifications

AC voltage specifications

Table 4-2 AC voltage specifications

Range	Resolution	U1191A	U1192A	U1193A	U1194A	Input impedance		
	45 Hz to 500 Hz							
60.00 V	0.01 V	-	1.2% + 5	1.2% + 5	1.2% + 5	10 MΩ		
600.0 V	0.1 V	1.2% + 5	1.2% + 5	1.2% + 5	1.2% + 5	10 MΩ		

Notes for AC voltage specifications:

- **1** Overload protection: 600 Vrms
- 2 Input impedance: 10 M Ω (nominal) in parallel with <100 pF
- **3** Frequency response: 45 Hz to 500 Hz (sinusoidal waveform)
- **4** AC conversion type:
 - U1191A and U1192A: Average sensing, RMS indication
 - U1193A and U1194A: RMS sensing, RMS indication

AC current specifications

 Table 4-3
 AC current specifications

		Accuracy									
Range Resolution	Resolution	U1191A		U1192A		U1193A		U1194A			
	45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz			
60.00 µA	0.01 µA	-	-	-	-	-	-	1.0% + 5	1.0% + 5		
600.0 µA	0.1 µA	-	-	-	-	-	-	1.0% + 5	1.0% + 5		
60.00 A	0.01 A	-	-	2.0% + 5	3.0% + 5	2.0% + 5	3.0% + 5	2.0% + 5	3.0% + 5		
400.0 A	0.1 A	2.0% + 5	3.0% + 5	2.0% + 5	3.0% + 5	-	-	-	-		

Table 4-3 AC current specifications (continued)

		Accuracy								
Range Resolution	U1191A		U1192A		U1193A		U1194A			
		45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz	45 Hz to 65 Hz	65 Hz to 500 Hz	
600.0 A	0.1 A	-	-	-	-	2.0% + 5	3.0% + 5	2.0% + 5	3.0% + 5	

Notes for AC current specifications:

- **1** Overload protection:
 - U1191A and U1192A: 400 Arms
 - U1193A and U1194A: 600 Arms
- 2 Input impedance for 60 μ A to 600 μ A range: \approx 4.2 k Ω
- 3 Frequency response: 45 Hz to 500 Hz (sinusoidal waveform)
- 4 Position error: 1% from reading
- 5 AC conversion type:
 - U1191A and U1192A: Average sensing, RMS indication
 - U1193A and U1194A: RMS sensing, RMS indication
- **6** For non-sinusoidal waveform, add an additional accuracy of (2% of reading + 2% of full scale) typically for crest factor \geq 3.0.

Capacitance specifications

Table 4-4	Capacitance	specifications
	•	00000000000000

Danna	Deschation		Measuring rate			
Range	Resolution	U1191A	U1192A	U1193A	U1194A	(at full scale)
600.0 μF	0.1 μF	-	2.0% + 4	2.0% + 4	2.0% + 4	2 times/second
6.00 mF	0.001 mF	-	2.0% + 4	2.0% + 4	2.0% + 4	1 time/9 seconds

Notes for capacitance specifications:

1 This function is only applicable for U1192A, U1193A, and U1194A models.

- 2 Overload protection: 600 Vrms for short circuits with <0.3 A current
- **3** The accuracy of for all ranges is specified based on a film capacitor or better, and after the Null function is used to subtract the test lead resistance and thermal effect (by opening the test leads).

Temperature specifications

Thermalture	Danna	Baselution	Accuracy
Thermal type	Range	Resolution	U1194A
V	-40 °C to 400 °C	0.1 °C	1.0% + 2.0 °C
K	400 °C to 1200 °C	1.0 °C	1.0% + 2.0 °C
V	-40 °F to 752 °F	0.1 °F	1.0% + 3.6 °F
K -	752 °F to 2192 °F	1.0 °F	1.0% + 3.6 °F

Table 4-5 Temperature specifications

Notes for temperature specifications:

- 1 This function is only applicable for the U1194A model.
- 2 The specification above is specified after the clamp meter has been left stationary in the same operating environment for 1 hour at least. If the unit is exposed during storage in a high humidity (condensing) environment, ensure that the clamp meter has been in the same operating environment for 2 hours at least.
- **3** The accuracy does not include the tolerance of the thermocouple probe.
- 4 Do not allow the temperature sensor to contact a surface that is energized above 30 Vrms or 60 V DC. Such voltages pose a shock hazard.
- 5 The temperature calculation is specified according to the safety standards of EN/IEC-60548-1 and NIST175.
- 6 The accuracy specification assumes the surrounding temperature is stable with ±1 °C. For the surrounding temperature changes of ±3 °C, the rated accuracy applies after two hours.

Frequency specifications

Danaa	Decolution		Minimum input				
Range	Resolution	U1191A	U1192A	U1193A	U1194A	frequency	
99.99 Hz	0.01 Hz	0.5% + 3	0.5% + 3	0.5% + 3	0.5% + 3		
999.9 Hz	0.1 Hz	0.5% + 3	0.5% + 3	0.5% + 3	0.5% + 3		
9.999kHz	0.001 kHz	0.5% + 3	0.5% + 3	0.5% + 3	0.5% + 3	10 Hz	
99.99 kHz	0.01 kHz	0.5% + 3	0.5% + 3	0.5% + 3	0.5% + 3		

 Table 4-6
 Frequency specifications

Notes for frequency specifications:

1 This function is only applicable for U1192A, U1193A, and U1194A models.

2 Overload protection: 600 V

Frequency sensitivity specifications

For voltage measurements

 Table 4-7
 Frequency sensitivity and trigger-level specifications for voltage measurements

Input range	Minimum sensitivity (RMS sine wave)		
Maximum input for specified accuracy	10 Hz to 10 kHz	10 kHz to 60 kHz	
60 V	6 V	30 V	
600 V	60 V	-	

Notes for frequency sensitivity specifications for voltage measurements:

1 This function is only applicable for U1192A, U1193A, and U1194A models.

2 Maximum input for specified accuracy, refer to "AC specifications" on page 68.

For current measurements

 Table 4-8
 Frequency sensitivity and trigger level specifications for current measurements

Input range	Minimum sensitivity (RMS sine wave)	
Maximum input for specified accuracy	45 Hz to 1 kHz	
60 A	6.0A	
600 A	60 A	

Notes for frequency sensitivity specifications for voltage measurements:

1 This function is only applicable for U1192A, U1193A, and U1194A models.

2 Maximum input for specified accuracy, refer to "AC specifications" on page 68.

Display update rate (approximate)

Table 4-9	Display	update rate	(approximate)
	Diopia,	apaato rato	approximato

Function —	Times/second			
	U1191A	U1192A	U1193A	U1194A
AC V	3	3	3	3
DC V	3	3	3	3
Ω	2	2	2	2
Diode	3	3	3	3
Capacitance		2 times/1 second (600 μF)	2 times/1 second (600 μF)	2 times/1 second (600 μF)
	-	1 time/9 seconds (6 mF)	1 time/9 seconds (6 mF)	1 time/9 seconds (6 mF)
Temperature	-	-	-	2
DC A (µA or A)	-	-	-	3
AC A (µA or A)	3	3	3	3
Frequency	-	3 (>10 Hz)	3 (>10 Hz)	3 (>10 Hz)

www.agilent.com

Contact us

To obtain service, warranty, or technical assistance, contact us at the following phone or fax numbers:

United States:				
(tel) 800 829 4444	(fax) 800 829 4433			
Canada:				
(tel) 877 894 4414	(fax) 800 746 4866			
China:				
(tel) 800 810 0189	(fax) 800 820 2816			
Europe:				
(tel) 31 20 547 2111				
Japan:				
(tel) (81) 426 56 7832	(fax) (81) 426 56 7840			
Korea:				
(tel) (080) 769 0800	(fax) (080) 769 0900			
Latin America:				
(tel) (305) 269 7500				
Taiwan:				
(tel) 0800 047 866	(fax) 0800 286 331			
Other Asia Pacific Countries:				
(tel) (65) 6375 8100	(fax) (65) 6755 0042			

Or visit Agilent World Wide Web at: www.agilent.com/find/assist

Product specifications and descriptions in this document are subject to change without notice. Always refer to the Agilent website for the latest revision.

© Agilent Technologies, Inc., 2011

Second Edition, November 2011 U1191-90003

